Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
2 |
|
simp2r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
simp2l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
simp3l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
btwncom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ↔ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) |
6 |
1 2 3 4 5
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ↔ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) |
7 |
|
simp3r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
8 |
|
btwncom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ↔ 𝐶 Btwn 〈 𝐷 , 𝐴 〉 ) ) |
9 |
1 4 3 7 8
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ↔ 𝐶 Btwn 〈 𝐷 , 𝐴 〉 ) ) |
10 |
6 9
|
anbi12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ) ↔ ( 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∧ 𝐶 Btwn 〈 𝐷 , 𝐴 〉 ) ) ) |
11 |
|
ancom |
⊢ ( ( 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∧ 𝐶 Btwn 〈 𝐷 , 𝐴 〉 ) ↔ ( 𝐶 Btwn 〈 𝐷 , 𝐴 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) |
12 |
10 11
|
bitrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ) ↔ ( 𝐶 Btwn 〈 𝐷 , 𝐴 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) ) |
13 |
|
btwnexch2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 Btwn 〈 𝐷 , 𝐴 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) → 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ) ) |
14 |
1 7 4 2 3 13
|
syl122anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 Btwn 〈 𝐷 , 𝐴 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) → 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ) ) |
15 |
12 14
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ) → 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ) ) |
16 |
|
btwncom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ↔ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) |
17 |
1 2 7 3 16
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ↔ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) |
18 |
15 17
|
sylibd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ) → 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) |