| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | simp2r | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 3 |  | simp2l | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 |  | simp3l | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | btwncom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ↔  𝐵  Btwn  〈 𝐶 ,  𝐴 〉 ) ) | 
						
							| 6 | 1 2 3 4 5 | syl13anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ↔  𝐵  Btwn  〈 𝐶 ,  𝐴 〉 ) ) | 
						
							| 7 |  | simp3r | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 8 |  | btwncom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ↔  𝐶  Btwn  〈 𝐷 ,  𝐴 〉 ) ) | 
						
							| 9 | 1 4 3 7 8 | syl13anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐶  Btwn  〈 𝐴 ,  𝐷 〉  ↔  𝐶  Btwn  〈 𝐷 ,  𝐴 〉 ) ) | 
						
							| 10 | 6 9 | anbi12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝐷 〉 )  ↔  ( 𝐵  Btwn  〈 𝐶 ,  𝐴 〉  ∧  𝐶  Btwn  〈 𝐷 ,  𝐴 〉 ) ) ) | 
						
							| 11 |  | ancom | ⊢ ( ( 𝐵  Btwn  〈 𝐶 ,  𝐴 〉  ∧  𝐶  Btwn  〈 𝐷 ,  𝐴 〉 )  ↔  ( 𝐶  Btwn  〈 𝐷 ,  𝐴 〉  ∧  𝐵  Btwn  〈 𝐶 ,  𝐴 〉 ) ) | 
						
							| 12 | 10 11 | bitrdi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝐷 〉 )  ↔  ( 𝐶  Btwn  〈 𝐷 ,  𝐴 〉  ∧  𝐵  Btwn  〈 𝐶 ,  𝐴 〉 ) ) ) | 
						
							| 13 |  | btwnexch2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐶  Btwn  〈 𝐷 ,  𝐴 〉  ∧  𝐵  Btwn  〈 𝐶 ,  𝐴 〉 )  →  𝐵  Btwn  〈 𝐷 ,  𝐴 〉 ) ) | 
						
							| 14 | 1 7 4 2 3 13 | syl122anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐶  Btwn  〈 𝐷 ,  𝐴 〉  ∧  𝐵  Btwn  〈 𝐶 ,  𝐴 〉 )  →  𝐵  Btwn  〈 𝐷 ,  𝐴 〉 ) ) | 
						
							| 15 | 12 14 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝐷 〉 )  →  𝐵  Btwn  〈 𝐷 ,  𝐴 〉 ) ) | 
						
							| 16 |  | btwncom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐵  Btwn  〈 𝐷 ,  𝐴 〉  ↔  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) | 
						
							| 17 | 1 2 7 3 16 | syl13anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 𝐵  Btwn  〈 𝐷 ,  𝐴 〉  ↔  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) | 
						
							| 18 | 15 17 | sylibd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝐷 〉 )  →  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) ) |