Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
2 |
|
simp2r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
simp3r |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
simp2l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
necom |
⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) |
6 |
5
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) ) |
7 |
|
simp3l |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
8 |
|
btwncom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ↔ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) |
9 |
1 2 4 7 8
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ↔ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) |
10 |
|
btwncom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ↔ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ) ) |
11 |
1 7 2 3 10
|
syl13anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ↔ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ) ) |
12 |
6 9 11
|
3anbi123d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∧ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ) ) ) |
13 |
|
3ancomb |
⊢ ( ( 𝐶 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∧ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ) ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) |
14 |
12 13
|
bitrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) ) |
15 |
14
|
biimpa |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ) → ( 𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) ) |
16 |
|
btwnouttr2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) → 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ) ) |
17 |
1 3 7 2 4 16
|
syl122anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) → 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ) → ( ( 𝐶 ≠ 𝐵 ∧ 𝐶 Btwn 〈 𝐷 , 𝐵 〉 ∧ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ) → 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ) ) |
19 |
15 18
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ) → 𝐵 Btwn 〈 𝐷 , 𝐴 〉 ) |
20 |
1 2 3 4 19
|
btwncomand |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ) → 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) |
21 |
20
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) → 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) |