Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
2 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
3 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
4 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
5 |
|
axsegcon |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) |
6 |
1 2 3 3 4 5
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) |
7 |
6
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) -> E. x e. ( EE ` N ) ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) |
8 |
|
simprrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> C Btwn <. A , x >. ) |
9 |
|
simprl1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> B =/= C ) |
10 |
|
simpl2 |
|- ( ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) -> B Btwn <. A , C >. ) |
11 |
|
simprl |
|- ( ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) -> C Btwn <. A , x >. ) |
12 |
10 11
|
jca |
|- ( ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) -> ( B Btwn <. A , C >. /\ C Btwn <. A , x >. ) ) |
13 |
12
|
adantl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> ( B Btwn <. A , C >. /\ C Btwn <. A , x >. ) ) |
14 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) |
15 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
16 |
|
simpl2r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
17 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
18 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
19 |
|
btwnexch3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ x e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , x >. ) -> C Btwn <. B , x >. ) ) |
20 |
14 15 16 17 18 19
|
syl122anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , x >. ) -> C Btwn <. B , x >. ) ) |
21 |
20
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , x >. ) -> C Btwn <. B , x >. ) ) |
22 |
13 21
|
mpd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> C Btwn <. B , x >. ) |
23 |
|
simprrr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> <. C , x >. Cgr <. C , D >. ) |
24 |
22 23
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> ( C Btwn <. B , x >. /\ <. C , x >. Cgr <. C , D >. ) ) |
25 |
|
simprl3 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> C Btwn <. B , D >. ) |
26 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> D e. ( EE ` N ) ) |
27 |
14 17 26
|
cgrrflxd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> <. C , D >. Cgr <. C , D >. ) |
28 |
27
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> <. C , D >. Cgr <. C , D >. ) |
29 |
25 28
|
jca |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> ( C Btwn <. B , D >. /\ <. C , D >. Cgr <. C , D >. ) ) |
30 |
|
segconeq |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ x e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B =/= C /\ ( C Btwn <. B , x >. /\ <. C , x >. Cgr <. C , D >. ) /\ ( C Btwn <. B , D >. /\ <. C , D >. Cgr <. C , D >. ) ) -> x = D ) ) |
31 |
14 17 17 26 16 18 26 30
|
syl133anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( B =/= C /\ ( C Btwn <. B , x >. /\ <. C , x >. Cgr <. C , D >. ) /\ ( C Btwn <. B , D >. /\ <. C , D >. Cgr <. C , D >. ) ) -> x = D ) ) |
32 |
31
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> ( ( B =/= C /\ ( C Btwn <. B , x >. /\ <. C , x >. Cgr <. C , D >. ) /\ ( C Btwn <. B , D >. /\ <. C , D >. Cgr <. C , D >. ) ) -> x = D ) ) |
33 |
9 24 29 32
|
mp3and |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> x = D ) |
34 |
33
|
opeq2d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> <. A , x >. = <. A , D >. ) |
35 |
8 34
|
breqtrd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) /\ ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) ) ) -> C Btwn <. A , D >. ) |
36 |
35
|
expr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) -> ( ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) -> C Btwn <. A , D >. ) ) |
37 |
36
|
an32s |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) /\ x e. ( EE ` N ) ) -> ( ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) -> C Btwn <. A , D >. ) ) |
38 |
37
|
rexlimdva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) -> ( E. x e. ( EE ` N ) ( C Btwn <. A , x >. /\ <. C , x >. Cgr <. C , D >. ) -> C Btwn <. A , D >. ) ) |
39 |
7 38
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) -> C Btwn <. A , D >. ) |
40 |
39
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) |