Metamath Proof Explorer


Theorem btwnswapid2

Description: If you can swap arguments one and three of a betweenness statement, then those arguments are identical. (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion btwnswapid2 N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C C Btwn B A A = C

Proof

Step Hyp Ref Expression
1 btwncom N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A Btwn C B
2 3anrev A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N B 𝔼 N A 𝔼 N
3 btwncom N C 𝔼 N B 𝔼 N A 𝔼 N C Btwn B A C Btwn A B
4 2 3 sylan2b N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn B A C Btwn A B
5 1 4 anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C C Btwn B A A Btwn C B C Btwn A B
6 3ancomb A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N C 𝔼 N B 𝔼 N
7 btwnswapid N A 𝔼 N C 𝔼 N B 𝔼 N A Btwn C B C Btwn A B A = C
8 6 7 sylan2b N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn C B C Btwn A B A = C
9 5 8 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C C Btwn B A A = C