Step |
Hyp |
Ref |
Expression |
1 |
|
btwncom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ) ) |
2 |
|
3anrev |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
3 |
|
btwncom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ↔ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) |
4 |
2 3
|
sylan2b |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ↔ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) |
5 |
1 4
|
anbi12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) ↔ ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∧ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ) |
6 |
|
3ancomb |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
7 |
|
btwnswapid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∧ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) → 𝐴 = 𝐶 ) ) |
8 |
6 7
|
sylan2b |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ∧ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) → 𝐴 = 𝐶 ) ) |
9 |
5 8
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ 𝐶 Btwn ⟨ 𝐵 , 𝐴 ⟩ ) → 𝐴 = 𝐶 ) ) |