Metamath Proof Explorer


Theorem canth2

Description: Cantor's Theorem. No set is equinumerous to its power set. Specifically, any set has a cardinality (size) strictly less than the cardinality of its power set. For example, the cardinality of real numbers is the same as the cardinality of the power set of integers, so real numbers cannot be put into a one-to-one correspondence with integers. Theorem 23 of Suppes p. 97. For the function version, see canth . This is Metamath 100 proof #63. (Contributed by NM, 7-Aug-1994)

Ref Expression
Hypothesis canth2.1 AV
Assertion canth2 A𝒫A

Proof

Step Hyp Ref Expression
1 canth2.1 AV
2 1 pwex 𝒫AV
3 snelpwi xAx𝒫A
4 vex xV
5 4 sneqr x=yx=y
6 sneq x=yx=y
7 5 6 impbii x=yx=y
8 7 a1i xAyAx=yx=y
9 3 8 dom3 AV𝒫AVA𝒫A
10 1 2 9 mp2an A𝒫A
11 1 canth ¬f:Aonto𝒫A
12 f1ofo f:A1-1 onto𝒫Af:Aonto𝒫A
13 11 12 mto ¬f:A1-1 onto𝒫A
14 13 nex ¬ff:A1-1 onto𝒫A
15 bren A𝒫Aff:A1-1 onto𝒫A
16 14 15 mtbir ¬A𝒫A
17 brsdom A𝒫AA𝒫A¬A𝒫A
18 10 16 17 mpbir2an A𝒫A