Metamath Proof Explorer


Theorem canth2g

Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of Suppes p. 97. (Contributed by NM, 7-Nov-2003)

Ref Expression
Assertion canth2g AVA𝒫A

Proof

Step Hyp Ref Expression
1 pweq x=A𝒫x=𝒫A
2 breq12 x=A𝒫x=𝒫Ax𝒫xA𝒫A
3 1 2 mpdan x=Ax𝒫xA𝒫A
4 vex xV
5 4 canth2 x𝒫x
6 3 5 vtoclg AVA𝒫A