Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of Suppes p. 97. (Contributed by NM, 7-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canth2g | |- ( A e. V -> A ~< ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 2 | breq12 | |- ( ( x = A /\ ~P x = ~P A ) -> ( x ~< ~P x <-> A ~< ~P A ) ) |
|
| 3 | 1 2 | mpdan | |- ( x = A -> ( x ~< ~P x <-> A ~< ~P A ) ) |
| 4 | vex | |- x e. _V |
|
| 5 | 4 | canth2 | |- x ~< ~P x |
| 6 | 3 5 | vtoclg | |- ( A e. V -> A ~< ~P A ) |