Metamath Proof Explorer


Theorem caov32d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φAS
caovd.2 φBS
caovd.3 φCS
caovd.com φxSySxFy=yFx
caovd.ass φxSySzSxFyFz=xFyFz
Assertion caov32d φAFBFC=AFCFB

Proof

Step Hyp Ref Expression
1 caovd.1 φAS
2 caovd.2 φBS
3 caovd.3 φCS
4 caovd.com φxSySxFy=yFx
5 caovd.ass φxSySzSxFyFz=xFyFz
6 4 2 3 caovcomd φBFC=CFB
7 6 oveq2d φAFBFC=AFCFB
8 5 1 2 3 caovassd φAFBFC=AFBFC
9 5 1 3 2 caovassd φAFCFB=AFCFB
10 7 8 9 3eqtr4d φAFBFC=AFCFB