Metamath Proof Explorer


Theorem caov42d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φAS
caovd.2 φBS
caovd.3 φCS
caovd.com φxSySxFy=yFx
caovd.ass φxSySzSxFyFz=xFyFz
caovd.4 φDS
caovd.cl φxSySxFyS
Assertion caov42d φAFBFCFD=AFCFDFB

Proof

Step Hyp Ref Expression
1 caovd.1 φAS
2 caovd.2 φBS
3 caovd.3 φCS
4 caovd.com φxSySxFy=yFx
5 caovd.ass φxSySzSxFyFz=xFyFz
6 caovd.4 φDS
7 caovd.cl φxSySxFyS
8 1 2 3 4 5 6 7 caov4d φAFBFCFD=AFCFBFD
9 4 2 6 caovcomd φBFD=DFB
10 9 oveq2d φAFCFBFD=AFCFDFB
11 8 10 eqtrd φAFBFCFD=AFCFDFB