Metamath Proof Explorer


Theorem caovcan

Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995)

Ref Expression
Hypotheses caovcan.1 CV
caovcan.2 xSySxFy=xFzy=z
Assertion caovcan ASBSAFB=AFCB=C

Proof

Step Hyp Ref Expression
1 caovcan.1 CV
2 caovcan.2 xSySxFy=xFzy=z
3 oveq1 x=AxFy=AFy
4 oveq1 x=AxFC=AFC
5 3 4 eqeq12d x=AxFy=xFCAFy=AFC
6 5 imbi1d x=AxFy=xFCy=CAFy=AFCy=C
7 oveq2 y=BAFy=AFB
8 7 eqeq1d y=BAFy=AFCAFB=AFC
9 eqeq1 y=By=CB=C
10 8 9 imbi12d y=BAFy=AFCy=CAFB=AFCB=C
11 oveq2 z=CxFz=xFC
12 11 eqeq2d z=CxFy=xFzxFy=xFC
13 eqeq2 z=Cy=zy=C
14 12 13 imbi12d z=CxFy=xFzy=zxFy=xFCy=C
15 14 imbi2d z=CxSySxFy=xFzy=zxSySxFy=xFCy=C
16 1 15 2 vtocl xSySxFy=xFCy=C
17 6 10 16 vtocl2ga ASBSAFB=AFCB=C