Metamath Proof Explorer


Theorem caovcanrd

Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcang.1 φxTySzSxFy=xFzy=z
caovcand.2 φAT
caovcand.3 φBS
caovcand.4 φCS
caovcanrd.5 φAS
caovcanrd.6 φxSySxFy=yFx
Assertion caovcanrd φBFA=CFAB=C

Proof

Step Hyp Ref Expression
1 caovcang.1 φxTySzSxFy=xFzy=z
2 caovcand.2 φAT
3 caovcand.3 φBS
4 caovcand.4 φCS
5 caovcanrd.5 φAS
6 caovcanrd.6 φxSySxFy=yFx
7 6 5 3 caovcomd φAFB=BFA
8 6 5 4 caovcomd φAFC=CFA
9 7 8 eqeq12d φAFB=AFCBFA=CFA
10 1 2 3 4 caovcand φAFB=AFCB=C
11 9 10 bitr3d φBFA=CFAB=C