Metamath Proof Explorer


Theorem caovdid

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdig.1 φxKySzSxGyFz=xGyHxGz
caovdid.2 φAK
caovdid.3 φBS
caovdid.4 φCS
Assertion caovdid φAGBFC=AGBHAGC

Proof

Step Hyp Ref Expression
1 caovdig.1 φxKySzSxGyFz=xGyHxGz
2 caovdid.2 φAK
3 caovdid.3 φBS
4 caovdid.4 φCS
5 id φφ
6 1 caovdig φAKBSCSAGBFC=AGBHAGC
7 5 2 3 4 6 syl13anc φAGBFC=AGBHAGC