Metamath Proof Explorer


Theorem caovlem2

Description: Lemma used in real number construction. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caovdir.1 AV
caovdir.2 BV
caovdir.3 CV
caovdir.com xGy=yGx
caovdir.distr xGyFz=xGyFxGz
caovdl.4 DV
caovdl.5 HV
caovdl.ass xGyGz=xGyGz
caovdl2.6 RV
caovdl2.com xFy=yFx
caovdl2.ass xFyFz=xFyFz
Assertion caovlem2 AGCFBGDGHFAGDFBGCGR=AGCGHFDGRFBGCGRFDGH

Proof

Step Hyp Ref Expression
1 caovdir.1 AV
2 caovdir.2 BV
3 caovdir.3 CV
4 caovdir.com xGy=yGx
5 caovdir.distr xGyFz=xGyFxGz
6 caovdl.4 DV
7 caovdl.5 HV
8 caovdl.ass xGyGz=xGyGz
9 caovdl2.6 RV
10 caovdl2.com xFy=yFx
11 caovdl2.ass xFyFz=xFyFz
12 ovex AGCGHV
13 ovex BGDGHV
14 ovex AGDGRV
15 ovex BGCGRV
16 12 13 14 10 11 15 caov42 AGCGHFBGDGHFAGDGRFBGCGR=AGCGHFAGDGRFBGCGRFBGDGH
17 1 2 3 4 5 6 7 8 caovdilem AGCFBGDGH=AGCGHFBGDGH
18 1 2 6 4 5 3 9 8 caovdilem AGDFBGCGR=AGDGRFBGCGR
19 17 18 oveq12i AGCFBGDGHFAGDFBGCGR=AGCGHFBGDGHFAGDGRFBGCGR
20 ovex CGHV
21 ovex DGRV
22 1 20 21 5 caovdi AGCGHFDGR=AGCGHFAGDGR
23 ovex CGRV
24 ovex DGHV
25 2 23 24 5 caovdi BGCGRFDGH=BGCGRFBGDGH
26 22 25 oveq12i AGCGHFDGRFBGCGRFDGH=AGCGHFAGDGRFBGCGRFBGDGH
27 16 19 26 3eqtr4i AGCFBGDGHFAGDFBGCGR=AGCGHFDGRFBGCGRFDGH