Metamath Proof Explorer


Theorem caovordd

Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovordg.1 φxSySzSxRyzFxRzFy
caovordd.2 φAS
caovordd.3 φBS
caovordd.4 φCS
Assertion caovordd φARBCFARCFB

Proof

Step Hyp Ref Expression
1 caovordg.1 φxSySzSxRyzFxRzFy
2 caovordd.2 φAS
3 caovordd.3 φBS
4 caovordd.4 φCS
5 id φφ
6 1 caovordg φASBSCSARBCFARCFB
7 5 2 3 4 6 syl13anc φARBCFARCFB