Metamath Proof Explorer


Theorem cardval2

Description: An alternate version of the value of the cardinal number of a set. Compare cardval . This theorem could be used to give a simpler definition of card in place of df-card . It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003)

Ref Expression
Assertion cardval2 AdomcardcardA=xOn|xA

Proof

Step Hyp Ref Expression
1 cardon cardAOn
2 1 oneli xcardAxOn
3 2 pm4.71ri xcardAxOnxcardA
4 cardsdomel xOnAdomcardxAxcardA
5 4 ancoms AdomcardxOnxAxcardA
6 5 pm5.32da AdomcardxOnxAxOnxcardA
7 3 6 bitr4id AdomcardxcardAxOnxA
8 7 eqabdv AdomcardcardA=x|xOnxA
9 df-rab xOn|xA=x|xOnxA
10 8 9 eqtr4di AdomcardcardA=xOn|xA