Metamath Proof Explorer


Theorem cbvdisj

Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses cbvdisj.1 _yB
cbvdisj.2 _xC
cbvdisj.3 x=yB=C
Assertion cbvdisj DisjxABDisjyAC

Proof

Step Hyp Ref Expression
1 cbvdisj.1 _yB
2 cbvdisj.2 _xC
3 cbvdisj.3 x=yB=C
4 1 nfcri yzB
5 2 nfcri xzC
6 3 eleq2d x=yzBzC
7 4 5 6 cbvrmow *xAzB*yAzC
8 7 albii z*xAzBz*yAzC
9 df-disj DisjxABz*xAzB
10 df-disj DisjyACz*yAzC
11 8 9 10 3bitr4i DisjxABDisjyAC