Metamath Proof Explorer


Theorem cbvrmow

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 16-Jun-2017) Avoid ax-10 , ax-13 . (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvrmow.1 yφ
cbvrmow.2 xψ
cbvrmow.3 x=yφψ
Assertion cbvrmow *xAφ*yAψ

Proof

Step Hyp Ref Expression
1 cbvrmow.1 yφ
2 cbvrmow.2 xψ
3 cbvrmow.3 x=yφψ
4 nfv yxA
5 4 1 nfan yxAφ
6 nfv xyA
7 6 2 nfan xyAψ
8 eleq1w x=yxAyA
9 8 3 anbi12d x=yxAφyAψ
10 5 7 9 cbvmow *xxAφ*yyAψ
11 df-rmo *xAφ*xxAφ
12 df-rmo *yAψ*yyAψ
13 10 11 12 3bitr4i *xAφ*yAψ