Metamath Proof Explorer


Theorem cbvreuw

Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 15-Oct-2016) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-10 . (Revised by Wolf Lammen, 10-Dec-2024)

Ref Expression
Hypotheses cbvreuw.1 yφ
cbvreuw.2 xψ
cbvreuw.3 x=yφψ
Assertion cbvreuw ∃!xAφ∃!yAψ

Proof

Step Hyp Ref Expression
1 cbvreuw.1 yφ
2 cbvreuw.2 xψ
3 cbvreuw.3 x=yφψ
4 1 2 3 cbvrexw xAφyAψ
5 1 2 3 cbvrmow *xAφ*yAψ
6 4 5 anbi12i xAφ*xAφyAψ*yAψ
7 reu5 ∃!xAφxAφ*xAφ
8 reu5 ∃!yAψyAψ*yAψ
9 6 7 8 3bitr4i ∃!xAφ∃!yAψ