Step |
Hyp |
Ref |
Expression |
1 |
|
cbvreuw.1 |
|- F/ y ph |
2 |
|
cbvreuw.2 |
|- F/ x ps |
3 |
|
cbvreuw.3 |
|- ( x = y -> ( ph <-> ps ) ) |
4 |
|
nfv |
|- F/ z ( x e. A /\ ph ) |
5 |
4
|
sb8euv |
|- ( E! x ( x e. A /\ ph ) <-> E! z [ z / x ] ( x e. A /\ ph ) ) |
6 |
|
sban |
|- ( [ z / x ] ( x e. A /\ ph ) <-> ( [ z / x ] x e. A /\ [ z / x ] ph ) ) |
7 |
6
|
eubii |
|- ( E! z [ z / x ] ( x e. A /\ ph ) <-> E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) ) |
8 |
|
clelsb1 |
|- ( [ z / x ] x e. A <-> z e. A ) |
9 |
8
|
anbi1i |
|- ( ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> ( z e. A /\ [ z / x ] ph ) ) |
10 |
9
|
eubii |
|- ( E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> E! z ( z e. A /\ [ z / x ] ph ) ) |
11 |
|
nfv |
|- F/ y z e. A |
12 |
1
|
nfsbv |
|- F/ y [ z / x ] ph |
13 |
11 12
|
nfan |
|- F/ y ( z e. A /\ [ z / x ] ph ) |
14 |
|
nfv |
|- F/ z ( y e. A /\ ps ) |
15 |
|
eleq1w |
|- ( z = y -> ( z e. A <-> y e. A ) ) |
16 |
|
sbequ |
|- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
17 |
2 3
|
sbiev |
|- ( [ y / x ] ph <-> ps ) |
18 |
16 17
|
bitrdi |
|- ( z = y -> ( [ z / x ] ph <-> ps ) ) |
19 |
15 18
|
anbi12d |
|- ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) ) |
20 |
13 14 19
|
cbveuw |
|- ( E! z ( z e. A /\ [ z / x ] ph ) <-> E! y ( y e. A /\ ps ) ) |
21 |
10 20
|
bitri |
|- ( E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> E! y ( y e. A /\ ps ) ) |
22 |
5 7 21
|
3bitri |
|- ( E! x ( x e. A /\ ph ) <-> E! y ( y e. A /\ ps ) ) |
23 |
|
df-reu |
|- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) |
24 |
|
df-reu |
|- ( E! y e. A ps <-> E! y ( y e. A /\ ps ) ) |
25 |
22 23 24
|
3bitr4i |
|- ( E! x e. A ph <-> E! y e. A ps ) |