Metamath Proof Explorer


Theorem cbvreuw

Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 15-Oct-2016) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvreuw.1
|- F/ y ph
cbvreuw.2
|- F/ x ps
cbvreuw.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvreuw
|- ( E! x e. A ph <-> E! y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvreuw.1
 |-  F/ y ph
2 cbvreuw.2
 |-  F/ x ps
3 cbvreuw.3
 |-  ( x = y -> ( ph <-> ps ) )
4 nfv
 |-  F/ z ( x e. A /\ ph )
5 4 sb8euv
 |-  ( E! x ( x e. A /\ ph ) <-> E! z [ z / x ] ( x e. A /\ ph ) )
6 sban
 |-  ( [ z / x ] ( x e. A /\ ph ) <-> ( [ z / x ] x e. A /\ [ z / x ] ph ) )
7 6 eubii
 |-  ( E! z [ z / x ] ( x e. A /\ ph ) <-> E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) )
8 clelsb3
 |-  ( [ z / x ] x e. A <-> z e. A )
9 8 anbi1i
 |-  ( ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> ( z e. A /\ [ z / x ] ph ) )
10 9 eubii
 |-  ( E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> E! z ( z e. A /\ [ z / x ] ph ) )
11 nfv
 |-  F/ y z e. A
12 1 nfsbv
 |-  F/ y [ z / x ] ph
13 11 12 nfan
 |-  F/ y ( z e. A /\ [ z / x ] ph )
14 nfv
 |-  F/ z ( y e. A /\ ps )
15 eleq1w
 |-  ( z = y -> ( z e. A <-> y e. A ) )
16 sbequ
 |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) )
17 2 3 sbiev
 |-  ( [ y / x ] ph <-> ps )
18 16 17 syl6bb
 |-  ( z = y -> ( [ z / x ] ph <-> ps ) )
19 15 18 anbi12d
 |-  ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) )
20 13 14 19 cbveuw
 |-  ( E! z ( z e. A /\ [ z / x ] ph ) <-> E! y ( y e. A /\ ps ) )
21 10 20 bitri
 |-  ( E! z ( [ z / x ] x e. A /\ [ z / x ] ph ) <-> E! y ( y e. A /\ ps ) )
22 5 7 21 3bitri
 |-  ( E! x ( x e. A /\ ph ) <-> E! y ( y e. A /\ ps ) )
23 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
24 df-reu
 |-  ( E! y e. A ps <-> E! y ( y e. A /\ ps ) )
25 22 23 24 3bitr4i
 |-  ( E! x e. A ph <-> E! y e. A ps )