Step |
Hyp |
Ref |
Expression |
1 |
|
cbvreuw.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
cbvreuw.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
cbvreuw.3 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
5 |
4
|
sb8euv |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑧 [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
6 |
|
sban |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
7 |
6
|
eubii |
⊢ ( ∃! 𝑧 [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
8 |
|
clelsb1 |
⊢ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) |
9 |
8
|
anbi1i |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
10 |
9
|
eubii |
⊢ ( ∃! 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ∃! 𝑧 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
11 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 |
12 |
1
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) |
15 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
16 |
|
sbequ |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
17 |
2 3
|
sbiev |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
18 |
16 17
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
19 |
15 18
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
20 |
13 14 19
|
cbveuw |
⊢ ( ∃! 𝑧 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
21 |
10 20
|
bitri |
⊢ ( ∃! 𝑧 ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
22 |
5 7 21
|
3bitri |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
23 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
24 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝐴 𝜓 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
25 |
22 23 24
|
3bitr4i |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑦 ∈ 𝐴 𝜓 ) |