| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvrmow.1 |
|- F/ y ph |
| 2 |
|
cbvrmow.2 |
|- F/ x ps |
| 3 |
|
cbvrmow.3 |
|- ( x = y -> ( ph <-> ps ) ) |
| 4 |
|
nfv |
|- F/ y x e. A |
| 5 |
4 1
|
nfan |
|- F/ y ( x e. A /\ ph ) |
| 6 |
|
nfv |
|- F/ x y e. A |
| 7 |
6 2
|
nfan |
|- F/ x ( y e. A /\ ps ) |
| 8 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
| 9 |
8 3
|
anbi12d |
|- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. A /\ ps ) ) ) |
| 10 |
5 7 9
|
cbvmow |
|- ( E* x ( x e. A /\ ph ) <-> E* y ( y e. A /\ ps ) ) |
| 11 |
|
df-rmo |
|- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
| 12 |
|
df-rmo |
|- ( E* y e. A ps <-> E* y ( y e. A /\ ps ) ) |
| 13 |
10 11 12
|
3bitr4i |
|- ( E* x e. A ph <-> E* y e. A ps ) |