Metamath Proof Explorer


Theorem cbvfo

Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997) (Proof shortened by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis cbvfo.1 Fx=yφψ
Assertion cbvfo F:AontoBxAφyBψ

Proof

Step Hyp Ref Expression
1 cbvfo.1 Fx=yφψ
2 fofn F:AontoBFFnA
3 1 bicomd Fx=yψφ
4 3 eqcoms y=Fxψφ
5 4 ralrn FFnAyranFψxAφ
6 2 5 syl F:AontoByranFψxAφ
7 forn F:AontoBranF=B
8 7 raleqdv F:AontoByranFψyBψ
9 6 8 bitr3d F:AontoBxAφyBψ