Metamath Proof Explorer


Theorem cbviunf

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011)

Ref Expression
Hypotheses cbviunf.x _xA
cbviunf.y _yA
cbviunf.1 _yB
cbviunf.2 _xC
cbviunf.3 x=yB=C
Assertion cbviunf xAB=yAC

Proof

Step Hyp Ref Expression
1 cbviunf.x _xA
2 cbviunf.y _yA
3 cbviunf.1 _yB
4 cbviunf.2 _xC
5 cbviunf.3 x=yB=C
6 3 nfcri yzB
7 4 nfcri xzC
8 5 eleq2d x=yzBzC
9 1 2 6 7 8 cbvrexfw xAzByAzC
10 9 abbii z|xAzB=z|yAzC
11 df-iun xAB=z|xAzB
12 df-iun yAC=z|yAzC
13 10 11 12 3eqtr4i xAB=yAC