Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbviunf.x | |- F/_ x A |
|
| cbviunf.y | |- F/_ y A |
||
| cbviunf.1 | |- F/_ y B |
||
| cbviunf.2 | |- F/_ x C |
||
| cbviunf.3 | |- ( x = y -> B = C ) |
||
| Assertion | cbviunf | |- U_ x e. A B = U_ y e. A C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunf.x | |- F/_ x A |
|
| 2 | cbviunf.y | |- F/_ y A |
|
| 3 | cbviunf.1 | |- F/_ y B |
|
| 4 | cbviunf.2 | |- F/_ x C |
|
| 5 | cbviunf.3 | |- ( x = y -> B = C ) |
|
| 6 | 3 | nfcri | |- F/ y z e. B |
| 7 | 4 | nfcri | |- F/ x z e. C |
| 8 | 5 | eleq2d | |- ( x = y -> ( z e. B <-> z e. C ) ) |
| 9 | 1 2 6 7 8 | cbvrexfw | |- ( E. x e. A z e. B <-> E. y e. A z e. C ) |
| 10 | 9 | abbii | |- { z | E. x e. A z e. B } = { z | E. y e. A z e. C } |
| 11 | df-iun | |- U_ x e. A B = { z | E. x e. A z e. B } |
|
| 12 | df-iun | |- U_ y e. A C = { z | E. y e. A z e. C } |
|
| 13 | 10 11 12 | 3eqtr4i | |- U_ x e. A B = U_ y e. A C |