Metamath Proof Explorer


Theorem cbvmpovw2

Description: Change bound variables and domains in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmpovw2.1 x = z y = w E = F
cbvmpovw2.2 x = z y = w C = D
cbvmpovw2.3 x = z y = w A = B
Assertion cbvmpovw2 x A , y C E = z B , w D F

Proof

Step Hyp Ref Expression
1 cbvmpovw2.1 x = z y = w E = F
2 cbvmpovw2.2 x = z y = w C = D
3 cbvmpovw2.3 x = z y = w A = B
4 simpl x = z y = w x = z
5 4 3 eleq12d x = z y = w x A z B
6 simpr x = z y = w y = w
7 6 2 eleq12d x = z y = w y C w D
8 5 7 anbi12d x = z y = w x A y C z B w D
9 1 eqeq2d x = z y = w t = E t = F
10 8 9 anbi12d x = z y = w x A y C t = E z B w D t = F
11 10 cbvoprab12v x y t | x A y C t = E = z w t | z B w D t = F
12 df-mpo x A , y C E = x y t | x A y C t = E
13 df-mpo z B , w D F = z w t | z B w D t = F
14 11 12 13 3eqtr4i x A , y C E = z B , w D F