Metamath Proof Explorer


Theorem cbvoprab123vw

Description: Change all bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab123vw.1 x = w y = u z = v ψ χ
Assertion cbvoprab123vw x y z | ψ = w u v | χ

Proof

Step Hyp Ref Expression
1 cbvoprab123vw.1 x = w y = u z = v ψ χ
2 simpll x = w y = u z = v x = w
3 simplr x = w y = u z = v y = u
4 2 3 opeq12d x = w y = u z = v x y = w u
5 simpr x = w y = u z = v z = v
6 4 5 opeq12d x = w y = u z = v x y z = w u v
7 6 eqeq2d x = w y = u z = v t = x y z t = w u v
8 7 1 anbi12d x = w y = u z = v t = x y z ψ t = w u v χ
9 8 cbvexdvaw x = w y = u z t = x y z ψ v t = w u v χ
10 9 cbvex2vw x y z t = x y z ψ w u v t = w u v χ
11 10 abbii t | x y z t = x y z ψ = t | w u v t = w u v χ
12 df-oprab x y z | ψ = t | x y z t = x y z ψ
13 df-oprab w u v | χ = t | w u v t = w u v χ
14 11 12 13 3eqtr4i x y z | ψ = w u v | χ