Metamath Proof Explorer


Theorem cbvoprab23vw

Description: Change the second and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab23vw.1 y = w z = v ψ χ
Assertion cbvoprab23vw x y z | ψ = x w v | χ

Proof

Step Hyp Ref Expression
1 cbvoprab23vw.1 y = w z = v ψ χ
2 opeq2 y = w x y = x w
3 2 adantr y = w z = v x y = x w
4 simpr y = w z = v z = v
5 3 4 opeq12d y = w z = v x y z = x w v
6 5 eqeq2d y = w z = v t = x y z t = x w v
7 6 1 anbi12d y = w z = v t = x y z ψ t = x w v χ
8 7 cbvex2vw y z t = x y z ψ w v t = x w v χ
9 8 exbii x y z t = x y z ψ x w v t = x w v χ
10 9 abbii t | x y z t = x y z ψ = t | x w v t = x w v χ
11 df-oprab x y z | ψ = t | x y z t = x y z ψ
12 df-oprab x w v | χ = t | x w v t = x w v χ
13 10 11 12 3eqtr4i x y z | ψ = x w v | χ