Step |
Hyp |
Ref |
Expression |
1 |
|
cbvoprab23vw.1 |
|- ( ( y = w /\ z = v ) -> ( ps <-> ch ) ) |
2 |
|
opeq2 |
|- ( y = w -> <. x , y >. = <. x , w >. ) |
3 |
2
|
adantr |
|- ( ( y = w /\ z = v ) -> <. x , y >. = <. x , w >. ) |
4 |
|
simpr |
|- ( ( y = w /\ z = v ) -> z = v ) |
5 |
3 4
|
opeq12d |
|- ( ( y = w /\ z = v ) -> <. <. x , y >. , z >. = <. <. x , w >. , v >. ) |
6 |
5
|
eqeq2d |
|- ( ( y = w /\ z = v ) -> ( t = <. <. x , y >. , z >. <-> t = <. <. x , w >. , v >. ) ) |
7 |
6 1
|
anbi12d |
|- ( ( y = w /\ z = v ) -> ( ( t = <. <. x , y >. , z >. /\ ps ) <-> ( t = <. <. x , w >. , v >. /\ ch ) ) ) |
8 |
7
|
cbvex2vw |
|- ( E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) ) |
9 |
8
|
exbii |
|- ( E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) ) |
10 |
9
|
abbii |
|- { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } = { t | E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) } |
11 |
|
df-oprab |
|- { <. <. x , y >. , z >. | ps } = { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } |
12 |
|
df-oprab |
|- { <. <. x , w >. , v >. | ch } = { t | E. x E. w E. v ( t = <. <. x , w >. , v >. /\ ch ) } |
13 |
10 11 12
|
3eqtr4i |
|- { <. <. x , y >. , z >. | ps } = { <. <. x , w >. , v >. | ch } |