Metamath Proof Explorer


Theorem cbvrabcsf

Description: A more general version of cbvrab with no distinct variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralcsf.1 _yA
cbvralcsf.2 _xB
cbvralcsf.3 yφ
cbvralcsf.4 xψ
cbvralcsf.5 x=yA=B
cbvralcsf.6 x=yφψ
Assertion cbvrabcsf xA|φ=yB|ψ

Proof

Step Hyp Ref Expression
1 cbvralcsf.1 _yA
2 cbvralcsf.2 _xB
3 cbvralcsf.3 yφ
4 cbvralcsf.4 xψ
5 cbvralcsf.5 x=yA=B
6 cbvralcsf.6 x=yφψ
7 nfv zxAφ
8 nfcsb1v _xz/xA
9 8 nfcri xzz/xA
10 nfs1v xzxφ
11 9 10 nfan xzz/xAzxφ
12 id x=zx=z
13 csbeq1a x=zA=z/xA
14 12 13 eleq12d x=zxAzz/xA
15 sbequ12 x=zφzxφ
16 14 15 anbi12d x=zxAφzz/xAzxφ
17 7 11 16 cbvab x|xAφ=z|zz/xAzxφ
18 nfcv _yz
19 18 1 nfcsb _yz/xA
20 19 nfcri yzz/xA
21 3 nfsb yzxφ
22 20 21 nfan yzz/xAzxφ
23 nfv zyBψ
24 id z=yz=y
25 csbeq1 z=yz/xA=y/xA
26 df-csb y/xA=v|[˙y/x]˙vA
27 2 nfcri xvB
28 5 eleq2d x=yvAvB
29 27 28 sbie yxvAvB
30 sbsbc yxvA[˙y/x]˙vA
31 29 30 bitr3i vB[˙y/x]˙vA
32 31 eqabi B=v|[˙y/x]˙vA
33 26 32 eqtr4i y/xA=B
34 25 33 eqtrdi z=yz/xA=B
35 24 34 eleq12d z=yzz/xAyB
36 sbequ z=yzxφyxφ
37 4 6 sbie yxφψ
38 36 37 bitrdi z=yzxφψ
39 35 38 anbi12d z=yzz/xAzxφyBψ
40 22 23 39 cbvab z|zz/xAzxφ=y|yBψ
41 17 40 eqtri x|xAφ=y|yBψ
42 df-rab xA|φ=x|xAφ
43 df-rab yB|ψ=y|yBψ
44 41 42 43 3eqtr4i xA|φ=yB|ψ