Metamath Proof Explorer


Theorem cbvralsvwOLD

Description: Obsolete version of cbvralsvw as of 8-Mar-2025. (Contributed by NM, 20-Nov-2005) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cbvralsvwOLD xAφyAyxφ

Proof

Step Hyp Ref Expression
1 nfv zφ
2 nfs1v xzxφ
3 sbequ12 x=zφzxφ
4 1 2 3 cbvralw xAφzAzxφ
5 nfv yzxφ
6 nfv zyxφ
7 sbequ z=yzxφyxφ
8 5 6 7 cbvralw zAzxφyAyxφ
9 4 8 bitri xAφyAyxφ