Metamath Proof Explorer


Theorem cbvrmowOLD

Description: Obsolete version of cbvrmow as of 23-May-2024. (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrmowOLD.1 yφ
cbvrmowOLD.2 xψ
cbvrmowOLD.3 x=yφψ
Assertion cbvrmowOLD *xAφ*yAψ

Proof

Step Hyp Ref Expression
1 cbvrmowOLD.1 yφ
2 cbvrmowOLD.2 xψ
3 cbvrmowOLD.3 x=yφψ
4 1 2 3 cbvrexw xAφyAψ
5 1 2 3 cbvreuw ∃!xAφ∃!yAψ
6 4 5 imbi12i xAφ∃!xAφyAψ∃!yAψ
7 rmo5 *xAφxAφ∃!xAφ
8 rmo5 *yAψyAψ∃!yAψ
9 6 7 8 3bitr4i *xAφ*yAψ