Metamath Proof Explorer


Theorem cbvsbdavw

Description: Change bound variable in proper substitution. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvsbdavw.1 φ x = y ψ χ
Assertion cbvsbdavw φ z x ψ z y χ

Proof

Step Hyp Ref Expression
1 cbvsbdavw.1 φ x = y ψ χ
2 equequ1 x = y x = t y = t
3 2 adantl φ x = y x = t y = t
4 3 1 imbi12d φ x = y x = t ψ y = t χ
5 4 cbvaldvaw φ x x = t ψ y y = t χ
6 5 imbi2d φ t = z x x = t ψ t = z y y = t χ
7 6 albidv φ t t = z x x = t ψ t t = z y y = t χ
8 df-sb z x ψ t t = z x x = t ψ
9 df-sb z y χ t t = z y y = t χ
10 7 8 9 3bitr4g φ z x ψ z y χ