Metamath Proof Explorer


Theorem ccat2s1len

Description: The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by JJ, 14-Jan-2024)

Ref Expression
Assertion ccat2s1len ⟨“X”⟩++⟨“Y”⟩=2

Proof

Step Hyp Ref Expression
1 s1cli ⟨“X”⟩WordV
2 s1cli ⟨“Y”⟩WordV
3 ccatlen ⟨“X”⟩WordV⟨“Y”⟩WordV⟨“X”⟩++⟨“Y”⟩=⟨“X”⟩+⟨“Y”⟩
4 s1len ⟨“X”⟩=1
5 s1len ⟨“Y”⟩=1
6 4 5 oveq12i ⟨“X”⟩+⟨“Y”⟩=1+1
7 1p1e2 1+1=2
8 6 7 eqtri ⟨“X”⟩+⟨“Y”⟩=2
9 3 8 eqtrdi ⟨“X”⟩WordV⟨“Y”⟩WordV⟨“X”⟩++⟨“Y”⟩=2
10 1 2 9 mp2an ⟨“X”⟩++⟨“Y”⟩=2