Metamath Proof Explorer


Theorem ccatw2s1len

Description: The length of the concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by AV, 5-Mar-2022)

Ref Expression
Assertion ccatw2s1len WWordVW++⟨“X”⟩++⟨“Y”⟩=W+2

Proof

Step Hyp Ref Expression
1 ccatws1clv WWordVW++⟨“X”⟩WordV
2 ccatws1len W++⟨“X”⟩WordVW++⟨“X”⟩++⟨“Y”⟩=W++⟨“X”⟩+1
3 1 2 syl WWordVW++⟨“X”⟩++⟨“Y”⟩=W++⟨“X”⟩+1
4 ccatws1len WWordVW++⟨“X”⟩=W+1
5 4 oveq1d WWordVW++⟨“X”⟩+1=W+1+1
6 lencl WWordVW0
7 nn0cn W0W
8 add1p1 WW+1+1=W+2
9 6 7 8 3syl WWordVW+1+1=W+2
10 3 5 9 3eqtrd WWordVW++⟨“X”⟩++⟨“Y”⟩=W+2