Metamath Proof Explorer


Theorem ccatws1clv

Description: The concatenation of a word with a singleton word (which can be over a different alphabet) is a word. (Contributed by AV, 5-Mar-2022)

Ref Expression
Assertion ccatws1clv WWordVW++⟨“X”⟩WordV

Proof

Step Hyp Ref Expression
1 wrdv WWordVWWordV
2 s1cli ⟨“X”⟩WordV
3 ccatcl WWordV⟨“X”⟩WordVW++⟨“X”⟩WordV
4 1 2 3 sylancl WWordVW++⟨“X”⟩WordV