Metamath Proof Explorer


Theorem ccatws1n0

Description: The concatenation of a word with a singleton word is not the empty set. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 5-Mar-2022)

Ref Expression
Assertion ccatws1n0 WWordVW++⟨“X”⟩

Proof

Step Hyp Ref Expression
1 lencl WWordVW0
2 nn0p1gt0 W00<W+1
3 1 2 syl WWordV0<W+1
4 ccatws1len WWordVW++⟨“X”⟩=W+1
5 3 4 breqtrrd WWordV0<W++⟨“X”⟩
6 ovex W++⟨“X”⟩V
7 hashneq0 W++⟨“X”⟩V0<W++⟨“X”⟩W++⟨“X”⟩
8 6 7 ax-mp 0<W++⟨“X”⟩W++⟨“X”⟩
9 5 8 sylib WWordVW++⟨“X”⟩