Metamath Proof Explorer


Theorem cdeqal

Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypothesis cdeqnot.1 CondEq x = y φ ψ
Assertion cdeqal CondEq x = y z φ z ψ

Proof

Step Hyp Ref Expression
1 cdeqnot.1 CondEq x = y φ ψ
2 1 cdeqri x = y φ ψ
3 2 albidv x = y z φ z ψ
4 3 cdeqi CondEq x = y z φ z ψ