Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cdeqnot.1 | ⊢ CondEq ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | cdeqal | ⊢ CondEq ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 ↔ ∀ 𝑧 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | ⊢ CondEq ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | cdeqri | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 | 2 | albidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 ↔ ∀ 𝑧 𝜓 ) ) |
4 | 3 | cdeqi | ⊢ CondEq ( 𝑥 = 𝑦 → ( ∀ 𝑧 𝜑 ↔ ∀ 𝑧 𝜓 ) ) |