Description: Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | cdeqal | |- CondEq ( x = y -> ( A. z ph <-> A. z ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
| 2 | 1 | cdeqri | |- ( x = y -> ( ph <-> ps ) ) |
| 3 | 2 | albidv | |- ( x = y -> ( A. z ph <-> A. z ps ) ) |
| 4 | 3 | cdeqi | |- CondEq ( x = y -> ( A. z ph <-> A. z ps ) ) |