Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
Assertion | cdeqab | |- CondEq ( x = y -> { z | ph } = { z | ps } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | |- CondEq ( x = y -> ( ph <-> ps ) ) |
|
2 | 1 | cdeqri | |- ( x = y -> ( ph <-> ps ) ) |
3 | 2 | abbidv | |- ( x = y -> { z | ph } = { z | ps } ) |
4 | 3 | cdeqi | |- CondEq ( x = y -> { z | ph } = { z | ps } ) |