Description: Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cdeqnot.1 | ⊢ CondEq ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | cdeqab | ⊢ CondEq ( 𝑥 = 𝑦 → { 𝑧 ∣ 𝜑 } = { 𝑧 ∣ 𝜓 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqnot.1 | ⊢ CondEq ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | cdeqri | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 | 2 | abbidv | ⊢ ( 𝑥 = 𝑦 → { 𝑧 ∣ 𝜑 } = { 𝑧 ∣ 𝜓 } ) |
4 | 3 | cdeqi | ⊢ CondEq ( 𝑥 = 𝑦 → { 𝑧 ∣ 𝜑 } = { 𝑧 ∣ 𝜓 } ) |