Metamath Proof Explorer


Theorem cdleme14

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, " and ... are axially perspective." We apply dalaw to cdleme13 . F and G represent f(s) and f(t) respectively. (Contributed by NM, 8-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙=K
cdleme12.j ˙=joinK
cdleme12.m ˙=meetK
cdleme12.a A=AtomsK
cdleme12.h H=LHypK
cdleme12.u U=P˙Q˙W
cdleme12.f F=S˙U˙Q˙P˙S˙W
cdleme12.g G=T˙U˙Q˙P˙T˙W
Assertion cdleme14 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙T˙P˙G˙Q˙P˙S˙Q˙F

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙=K
2 cdleme12.j ˙=joinK
3 cdleme12.m ˙=meetK
4 cdleme12.a A=AtomsK
5 cdleme12.h H=LHypK
6 cdleme12.u U=P˙Q˙W
7 cdleme12.f F=S˙U˙Q˙P˙S˙W
8 cdleme12.g G=T˙U˙Q˙P˙T˙W
9 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKHLWH
10 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPA¬P˙W
11 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQA
12 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPQ
13 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TSA¬S˙W
14 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TTA¬T˙W
15 simp23r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TST
16 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬U˙S˙T
17 15 16 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TST¬U˙S˙T
18 1 2 3 4 5 6 7 8 cdleme13 KHLWHPA¬P˙WQAPQSA¬S˙WTA¬T˙WST¬U˙S˙TS˙F˙T˙G˙P˙Q
19 9 10 11 12 13 14 17 18 syl133anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙F˙T˙G˙P˙Q
20 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKHL
21 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TSA
22 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TTA
23 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPA
24 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQA¬Q˙W
25 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬S˙P˙Q
26 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFA
27 9 10 24 13 12 25 26 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TFA
28 simp32 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬T˙P˙Q
29 1 2 3 4 5 6 8 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQ¬T˙P˙QGA
30 9 10 24 14 12 28 29 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TGA
31 1 2 3 4 dalaw KHLSATAPAFAGAQAS˙F˙T˙G˙P˙QS˙T˙F˙G˙T˙P˙G˙Q˙P˙S˙Q˙F
32 20 21 22 23 27 30 11 31 syl133anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙F˙T˙G˙P˙QS˙T˙F˙G˙T˙P˙G˙Q˙P˙S˙Q˙F
33 19 32 mpd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙T˙P˙G˙Q˙P˙S˙Q˙F