Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, showing, in their notation, ((s \/ p) /\ (f(s) \/ q)) \/ ((t \/ p) /\ (f(t) \/ q))=((p \/ s_1) /\ (q \/ s_1)) \/ ((p \/ t_1) /\ (q \/ t_1)). We represent f(s), f(t), s_1, and t_1 with F , G , C , and X respectively. The order of our operations is slightly different. (Contributed by NM, 9-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme12.l | |
|
cdleme12.j | |
||
cdleme12.m | |
||
cdleme12.a | |
||
cdleme12.h | |
||
cdleme12.u | |
||
cdleme12.f | |
||
cdleme12.g | |
||
cdleme15.c | |
||
cdleme15.x | |
||
Assertion | cdleme15a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme12.l | |
|
2 | cdleme12.j | |
|
3 | cdleme12.m | |
|
4 | cdleme12.a | |
|
5 | cdleme12.h | |
|
6 | cdleme12.u | |
|
7 | cdleme12.f | |
|
8 | cdleme12.g | |
|
9 | cdleme15.c | |
|
10 | cdleme15.x | |
|
11 | simp11l | |
|
12 | simp11r | |
|
13 | simp12l | |
|
14 | simp12r | |
|
15 | simp22l | |
|
16 | 1 2 3 4 5 10 | cdleme8 | |
17 | 11 12 13 14 15 16 | syl221anc | |
18 | 2 4 | hlatjcom | |
19 | 11 13 15 18 | syl3anc | |
20 | 17 19 | eqtr2d | |
21 | simp11 | |
|
22 | simp12 | |
|
23 | simp13 | |
|
24 | simp22 | |
|
25 | simp23l | |
|
26 | simp32 | |
|
27 | 1 2 3 4 5 6 8 | cdleme3fa | |
28 | 21 22 23 24 25 26 27 | syl132anc | |
29 | simp13l | |
|
30 | 2 4 | hlatjcom | |
31 | 11 28 29 30 | syl3anc | |
32 | 1 2 3 4 5 6 10 6 8 | cdleme11g | |
33 | 21 13 23 15 25 32 | syl131anc | |
34 | 31 33 | eqtrd | |
35 | 20 34 | oveq12d | |
36 | simp21l | |
|
37 | 1 2 3 4 5 9 | cdleme8 | |
38 | 11 12 13 14 36 37 | syl221anc | |
39 | 38 | eqcomd | |
40 | 1 2 3 4 5 6 9 6 7 | cdleme11g | |
41 | 21 13 23 36 25 40 | syl131anc | |
42 | 39 41 | oveq12d | |
43 | 35 42 | oveq12d | |