Metamath Proof Explorer


Theorem cdleme19f

Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114, line 3. D , F , N , Y , G , O represent s_2, f(s), f_s(r), t_2, f(t), f_t(r). We prove that if r <_ s \/ t, then f_t(r) = f_t(r). (Contributed by NM, 14-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme19.n N=P˙Q˙F˙D
cdleme19.o O=P˙Q˙G˙Y
Assertion cdleme19f KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TN=O

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme19.n N=P˙Q˙F˙D
12 cdleme19.o O=P˙Q˙G˙Y
13 1 2 3 4 5 6 7 8 9 10 cdleme19e KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TF˙D=G˙Y
14 13 oveq2d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TP˙Q˙F˙D=P˙Q˙G˙Y
15 14 11 12 3eqtr4g KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRAPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙S˙TN=O