Metamath Proof Explorer


Theorem cdleme20f

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, 4th line. D , F , Y , G represent s_2, f(s), t_2, f(t). We show and are axially perspective. (Contributed by NM, 17-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme20.v V=S˙T˙W
Assertion cdleme20f KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙D˙G˙Y˙D˙S˙Y˙T˙S˙F˙T˙G

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme20.v V=S˙T˙W
12 1 2 3 4 5 6 7 8 9 10 11 cdleme20e KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙G˙D˙Y˙S˙T
13 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QKHL
14 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QKHLWH
15 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QPA¬P˙W
16 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QQA¬Q˙W
17 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QSA¬S˙W
18 simp31l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QPQ
19 simp32l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬S˙P˙Q
20 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFA
21 14 15 16 17 18 19 20 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QFA
22 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QWH
23 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QSA
24 simp21r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬S˙W
25 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QRA
26 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QR˙P˙Q
27 1 2 3 4 5 9 cdlemeda KHLWHSA¬S˙WRAR˙P˙Q¬S˙P˙QDA
28 13 22 23 24 25 26 19 27 syl223anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QDA
29 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QTA¬T˙W
30 simp32r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬T˙P˙Q
31 1 2 3 4 5 6 8 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQ¬T˙P˙QGA
32 14 15 16 29 18 30 31 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QGA
33 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QTA
34 simp22r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬T˙W
35 1 2 3 4 5 10 cdlemeda KHLWHTA¬T˙WRAR˙P˙Q¬T˙P˙QYA
36 13 22 33 34 25 26 30 35 syl223anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QYA
37 1 2 3 4 dalaw KHLFADASAGAYATAF˙G˙D˙Y˙S˙TF˙D˙G˙Y˙D˙S˙Y˙T˙S˙F˙T˙G
38 13 21 28 23 32 36 33 37 syl133anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙G˙D˙Y˙S˙TF˙D˙G˙Y˙D˙S˙Y˙T˙S˙F˙T˙G
39 12 38 mpd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙D˙G˙Y˙D˙S˙Y˙T˙S˙F˙T˙G