Metamath Proof Explorer


Theorem cdleme20l1

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, penultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t) respectively. (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme20.v V=S˙T˙W
Assertion cdleme20l1 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QF˙DLLinesK

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme20.v V=S˙T˙W
12 simp11l KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QKHL
13 simp11 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QKHLWH
14 simp12 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QPA¬P˙W
15 simp13 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QQA¬Q˙W
16 simp22 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QSA
17 simp23 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙Q¬S˙W
18 16 17 jca KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QSA¬S˙W
19 simp31 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QPQ
20 simp32 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙Q¬S˙P˙Q
21 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFA
22 13 14 15 18 19 20 21 syl132anc KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QFA
23 simp11r KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QWH
24 simp21 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QRA
25 simp33 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QR˙P˙Q
26 1 2 3 4 5 9 cdlemeda KHLWHSA¬S˙WRAR˙P˙Q¬S˙P˙QDA
27 12 23 16 17 24 25 20 26 syl223anc KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QDA
28 1 2 3 4 5 6 7 7 9 9 cdleme19c KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WRAPQ¬S˙P˙QFD
29 12 23 14 15 18 24 19 20 28 syl233anc KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QFD
30 eqid LLinesK=LLinesK
31 2 4 30 llni2 KHLFADAFDF˙DLLinesK
32 12 22 27 29 31 syl31anc KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QF˙DLLinesK