Metamath Proof Explorer


Theorem cdleme20l2

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, penultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t) respectively. (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme20.v V=S˙T˙W
Assertion cdleme20l2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙YA

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme20.v V=S˙T˙W
12 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKHL
13 12 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKLat
14 simp11r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TWH
15 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPA
16 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TQA
17 simp22l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TSA
18 eqid BaseK=BaseK
19 1 2 3 4 5 6 7 18 cdleme1b KHLWHPAQASAFBaseK
20 12 14 15 16 17 19 syl23anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TFBaseK
21 simp21l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TRA
22 1 2 3 4 5 9 18 cdlemedb KHLWHRASADBaseK
23 12 14 21 17 22 syl22anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TDBaseK
24 simp23l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TTA
25 1 2 3 4 5 6 8 18 cdleme1b KHLWHPAQATAGBaseK
26 12 14 15 16 24 25 syl23anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TGBaseK
27 1 2 3 4 5 10 18 cdlemedb KHLWHRATAYBaseK
28 12 14 21 24 27 syl22anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TYBaseK
29 18 2 latj4 KLatFBaseKDBaseKGBaseKYBaseKF˙D˙G˙Y=F˙G˙D˙Y
30 13 20 23 26 28 29 syl122anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y=F˙G˙D˙Y
31 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKHLWHPA¬P˙WQA¬Q˙W
32 simp22 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TSA¬S˙W
33 simp23 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TTA¬T˙W
34 simp21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TRA¬R˙W
35 simp31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPQST
36 simp321 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬S˙P˙Q
37 simp322 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬T˙P˙Q
38 36 37 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬S˙P˙Q¬T˙P˙Q
39 simp323 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TR˙P˙Q
40 1 2 3 4 5 6 7 8 9 10 11 cdleme20d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WRA¬R˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙QF˙G˙D˙Y=V
41 31 32 33 34 35 38 39 40 syl133anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙G˙D˙Y=V
42 simp22r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬S˙W
43 simp31r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TST
44 1 2 3 4 5 11 lhpat2 KHLWHSA¬S˙WTASTVA
45 12 14 17 42 24 43 44 syl222anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TVA
46 41 45 eqeltrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙G˙D˙YA
47 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKHLWH
48 simp12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPA¬P˙W
49 simp13 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TQA¬Q˙W
50 simp31l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPQ
51 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFA
52 47 48 49 32 50 36 51 syl132anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TFA
53 1 2 3 4 5 6 8 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQ¬T˙P˙QGA
54 47 48 49 33 50 37 53 syl132anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TGA
55 simp33r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬U˙S˙T
56 1 2 3 4 5 6 7 8 cdleme16b KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TFG
57 31 32 33 35 36 37 55 56 syl133anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TFG
58 eqid LLinesK=LLinesK
59 2 4 58 llni2 KHLFAGAFGF˙GLLinesK
60 12 52 54 57 59 syl31anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙GLLinesK
61 1 2 3 4 5 9 cdlemeda KHLWHSA¬S˙WRAR˙P˙Q¬S˙P˙QDA
62 12 14 17 42 21 39 36 61 syl223anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TDA
63 simp23r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬T˙W
64 1 2 3 4 5 10 cdlemeda KHLWHTA¬T˙WRAR˙P˙Q¬T˙P˙QYA
65 12 14 24 63 21 39 37 64 syl223anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TYA
66 simp32 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬S˙P˙Q¬T˙P˙QR˙P˙Q
67 simp33l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬R˙S˙T
68 1 2 3 4 5 6 7 8 9 10 11 cdleme20j KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙TDY
69 47 48 49 34 32 33 35 66 67 68 syl333anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TDY
70 2 4 58 llni2 KHLDAYADYD˙YLLinesK
71 12 62 65 69 70 syl31anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TD˙YLLinesK
72 eqid LPlanesK=LPlanesK
73 2 3 4 58 72 2llnmj KHLF˙GLLinesKD˙YLLinesKF˙G˙D˙YAF˙G˙D˙YLPlanesK
74 12 60 71 73 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙G˙D˙YAF˙G˙D˙YLPlanesK
75 46 74 mpbid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙G˙D˙YLPlanesK
76 30 75 eqeltrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙YLPlanesK
77 1 2 3 4 5 6 7 8 9 10 11 cdleme20l1 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QF˙DLLinesK
78 47 48 49 21 17 42 50 36 39 77 syl333anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙DLLinesK
79 eqid T˙S˙W=T˙S˙W
80 1 2 3 4 5 6 8 7 10 9 79 cdleme20l1 KHLWHPA¬P˙WQA¬Q˙WRATA¬T˙WPQ¬T˙P˙QR˙P˙QG˙YLLinesK
81 47 48 49 21 24 63 50 37 39 80 syl333anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TG˙YLLinesK
82 2 3 4 58 72 2llnmj KHLF˙DLLinesKG˙YLLinesKF˙D˙G˙YAF˙D˙G˙YLPlanesK
83 12 78 81 82 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙YAF˙D˙G˙YLPlanesK
84 76 83 mpbird KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙YA