Metamath Proof Explorer


Theorem latj4

Description: Rearrangement of lattice join of 4 classes. ( chj4 analog.) (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses latjass.b B=BaseK
latjass.j ˙=joinK
Assertion latj4 KLatXBYBZBWBX˙Y˙Z˙W=X˙Z˙Y˙W

Proof

Step Hyp Ref Expression
1 latjass.b B=BaseK
2 latjass.j ˙=joinK
3 simp1 KLatXBYBZBWBKLat
4 simp2r KLatXBYBZBWBYB
5 simp3l KLatXBYBZBWBZB
6 simp3r KLatXBYBZBWBWB
7 1 2 latj12 KLatYBZBWBY˙Z˙W=Z˙Y˙W
8 3 4 5 6 7 syl13anc KLatXBYBZBWBY˙Z˙W=Z˙Y˙W
9 8 oveq2d KLatXBYBZBWBX˙Y˙Z˙W=X˙Z˙Y˙W
10 simp2l KLatXBYBZBWBXB
11 1 2 latjcl KLatZBWBZ˙WB
12 3 5 6 11 syl3anc KLatXBYBZBWBZ˙WB
13 1 2 latjass KLatXBYBZ˙WBX˙Y˙Z˙W=X˙Y˙Z˙W
14 3 10 4 12 13 syl13anc KLatXBYBZBWBX˙Y˙Z˙W=X˙Y˙Z˙W
15 1 2 latjcl KLatYBWBY˙WB
16 3 4 6 15 syl3anc KLatXBYBZBWBY˙WB
17 1 2 latjass KLatXBZBY˙WBX˙Z˙Y˙W=X˙Z˙Y˙W
18 3 10 5 16 17 syl13anc KLatXBYBZBWBX˙Z˙Y˙W=X˙Z˙Y˙W
19 9 14 18 3eqtr4d KLatXBYBZBWBX˙Y˙Z˙W=X˙Z˙Y˙W