Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
11 |
|
cdleme20.v |
|- V = ( ( S .\/ T ) ./\ W ) |
12 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> K e. HL ) |
13 |
12
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> K e. Lat ) |
14 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> W e. H ) |
15 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> P e. A ) |
16 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> Q e. A ) |
17 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> S e. A ) |
18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
19 |
1 2 3 4 5 6 7 18
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) ) |
20 |
12 14 15 16 17 19
|
syl23anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> F e. ( Base ` K ) ) |
21 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> R e. A ) |
22 |
1 2 3 4 5 9 18
|
cdlemedb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A ) ) -> D e. ( Base ` K ) ) |
23 |
12 14 21 17 22
|
syl22anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> D e. ( Base ` K ) ) |
24 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> T e. A ) |
25 |
1 2 3 4 5 6 8 18
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> G e. ( Base ` K ) ) |
26 |
12 14 15 16 24 25
|
syl23anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> G e. ( Base ` K ) ) |
27 |
1 2 3 4 5 10 18
|
cdlemedb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ T e. A ) ) -> Y e. ( Base ` K ) ) |
28 |
12 14 21 24 27
|
syl22anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> Y e. ( Base ` K ) ) |
29 |
18 2
|
latj4 |
|- ( ( K e. Lat /\ ( F e. ( Base ` K ) /\ D e. ( Base ` K ) ) /\ ( G e. ( Base ` K ) /\ Y e. ( Base ` K ) ) ) -> ( ( F .\/ D ) .\/ ( G .\/ Y ) ) = ( ( F .\/ G ) .\/ ( D .\/ Y ) ) ) |
30 |
13 20 23 26 28 29
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ D ) .\/ ( G .\/ Y ) ) = ( ( F .\/ G ) .\/ ( D .\/ Y ) ) ) |
31 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
32 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
33 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( T e. A /\ -. T .<_ W ) ) |
34 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
35 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( P =/= Q /\ S =/= T ) ) |
36 |
|
simp321 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
37 |
|
simp322 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. T .<_ ( P .\/ Q ) ) |
38 |
36 37
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) |
39 |
|
simp323 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> R .<_ ( P .\/ Q ) ) |
40 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( F .\/ G ) ./\ ( D .\/ Y ) ) = V ) |
41 |
31 32 33 34 35 38 39 40
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ G ) ./\ ( D .\/ Y ) ) = V ) |
42 |
|
simp22r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. S .<_ W ) |
43 |
|
simp31r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> S =/= T ) |
44 |
1 2 3 4 5 11
|
lhpat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ S =/= T ) ) -> V e. A ) |
45 |
12 14 17 42 24 43 44
|
syl222anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> V e. A ) |
46 |
41 45
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ G ) ./\ ( D .\/ Y ) ) e. A ) |
47 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
48 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
49 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
50 |
|
simp31l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> P =/= Q ) |
51 |
1 2 3 4 5 6 7
|
cdleme3fa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> F e. A ) |
52 |
47 48 49 32 50 36 51
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> F e. A ) |
53 |
1 2 3 4 5 6 8
|
cdleme3fa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ -. T .<_ ( P .\/ Q ) ) ) -> G e. A ) |
54 |
47 48 49 33 50 37 53
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> G e. A ) |
55 |
|
simp33r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. U .<_ ( S .\/ T ) ) |
56 |
1 2 3 4 5 6 7 8
|
cdleme16b |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ -. U .<_ ( S .\/ T ) ) ) -> F =/= G ) |
57 |
31 32 33 35 36 37 55 56
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> F =/= G ) |
58 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
59 |
2 4 58
|
llni2 |
|- ( ( ( K e. HL /\ F e. A /\ G e. A ) /\ F =/= G ) -> ( F .\/ G ) e. ( LLines ` K ) ) |
60 |
12 52 54 57 59
|
syl31anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( F .\/ G ) e. ( LLines ` K ) ) |
61 |
1 2 3 4 5 9
|
cdlemeda |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( R e. A /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> D e. A ) |
62 |
12 14 17 42 21 39 36 61
|
syl223anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> D e. A ) |
63 |
|
simp23r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. T .<_ W ) |
64 |
1 2 3 4 5 10
|
cdlemeda |
|- ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ R .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) -> Y e. A ) |
65 |
12 14 24 63 21 39 37 64
|
syl223anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> Y e. A ) |
66 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) |
67 |
|
simp33l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. R .<_ ( S .\/ T ) ) |
68 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20j |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ -. R .<_ ( S .\/ T ) ) ) -> D =/= Y ) |
69 |
47 48 49 34 32 33 35 66 67 68
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> D =/= Y ) |
70 |
2 4 58
|
llni2 |
|- ( ( ( K e. HL /\ D e. A /\ Y e. A ) /\ D =/= Y ) -> ( D .\/ Y ) e. ( LLines ` K ) ) |
71 |
12 62 65 69 70
|
syl31anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( D .\/ Y ) e. ( LLines ` K ) ) |
72 |
|
eqid |
|- ( LPlanes ` K ) = ( LPlanes ` K ) |
73 |
2 3 4 58 72
|
2llnmj |
|- ( ( K e. HL /\ ( F .\/ G ) e. ( LLines ` K ) /\ ( D .\/ Y ) e. ( LLines ` K ) ) -> ( ( ( F .\/ G ) ./\ ( D .\/ Y ) ) e. A <-> ( ( F .\/ G ) .\/ ( D .\/ Y ) ) e. ( LPlanes ` K ) ) ) |
74 |
12 60 71 73
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( ( F .\/ G ) ./\ ( D .\/ Y ) ) e. A <-> ( ( F .\/ G ) .\/ ( D .\/ Y ) ) e. ( LPlanes ` K ) ) ) |
75 |
46 74
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ G ) .\/ ( D .\/ Y ) ) e. ( LPlanes ` K ) ) |
76 |
30 75
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ D ) .\/ ( G .\/ Y ) ) e. ( LPlanes ` K ) ) |
77 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20l1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ D ) e. ( LLines ` K ) ) |
78 |
47 48 49 21 17 42 50 36 39 77
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( F .\/ D ) e. ( LLines ` K ) ) |
79 |
|
eqid |
|- ( ( T .\/ S ) ./\ W ) = ( ( T .\/ S ) ./\ W ) |
80 |
1 2 3 4 5 6 8 7 10 9 79
|
cdleme20l1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( G .\/ Y ) e. ( LLines ` K ) ) |
81 |
47 48 49 21 24 63 50 37 39 80
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( G .\/ Y ) e. ( LLines ` K ) ) |
82 |
2 3 4 58 72
|
2llnmj |
|- ( ( K e. HL /\ ( F .\/ D ) e. ( LLines ` K ) /\ ( G .\/ Y ) e. ( LLines ` K ) ) -> ( ( ( F .\/ D ) ./\ ( G .\/ Y ) ) e. A <-> ( ( F .\/ D ) .\/ ( G .\/ Y ) ) e. ( LPlanes ` K ) ) ) |
83 |
12 78 81 82
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( ( F .\/ D ) ./\ ( G .\/ Y ) ) e. A <-> ( ( F .\/ D ) .\/ ( G .\/ Y ) ) e. ( LPlanes ` K ) ) ) |
84 |
76 83
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ D ) ./\ ( G .\/ Y ) ) e. A ) |